
User Experience

One characteristic of software development in a modern digital organization is that it

puts the needs of the user at the core of the purpose of the team, rather than just focusing

on more detached engineering goals. The discipline of user experience (UX) works

hand-in-hand with this new style of development to help build software that truly meets

the user’s needs.

There is no clear definition of UX; the discipline is relatively young, and rapidly

evolving. UX has evolved from a number of separate, but related, fields, into one that

brings them all together. It merges the more academic discipline of human-computer

interaction (HCI) with the traditional “designer” roles of visual design, interaction

design, and product design, but it also covers designing processes and services, which

may previously have been done by a business analyst.

Before UX, many digital designers came from a traditional print background. For

many marketing or content-driven web sites, these were designed in the same way

as a newsletter or poster campaign might have been. This often left a big gap in skills

between designers and the developers; Photoshop files were thrown over a wall and

expected to be implemented in pixel-perfect fashion. The rise of responsive design

made this increasingly challenging, as the initial reaction was to make a design that fit

perfectly on an iPhone, but failed to adapt to the rapidly changing sizes of screens that

evolved from other manufacturers. This forced designers and developers to work closely

with each other, as these designs could no longer be specified perfectly in Photoshop,

but instead had to be specified in a more abstract way that conformed to the intent of

the designer. The developers then had to understand the design intent to express that in

code, rather than just creating a facsimile of the design.

For other types of applications, especially process-driven ones, many early

digital projects were taking existing paper-driven processes and implementing them

electronically. Traditionally, these types of forms were designed by business analysts,

who developed processes that satisfied the needs of the business, and when it came time

to implement these forms electronically, a business analyst would often specify these

interactions in the same form as the paper-based system. Sometimes a designer would

take those designs and style them to be aesthetically pleasing, but this missed any wider

scope of seeing how the process as a whole met the user’s needs, not just the business’s.

The study of human-computer interaction arose as a field within academic computer

science in the 1970s, but as web design grew out of the world of print design, these two

arenas were disjointed until the spread of a process known as user-centered design.

This new approach evolved from the traditional design of processes and interactions

by taking the scientific approach that HCI researchers used. This was to test prototype

user interfaces out on real users when they were in an early draft stage, then use the

observations from these experiments to iterate and evolve the design.

Combining this process design with UI design and applying a scientific approach to

bring users to the center of the process amounts to what is now known as the field of UX.

The UX of a product is more than just its UI; it is also the principles behind it and

how it works as a whole system. There are many sub-fields within UX, although only

the biggest organizations are fortunate enough to be able to employ specialists for every

field. Instead, most UX practitioners do a bit of everything.

Like in software engineering, job titles and roles are not universal. Some people

within UX use “designer” as a catch-all term, while others use it to refer to someone

who focuses more on visual design, but there are three main types of roles you might

come across. UX designers are similar to a traditional visual designer, who can produce

high-quality designs and assets for a developer to implement, and sometimes have

some front-end development skills themselves. Researchers, or user testers, are

typically focused on designing and running studies with potential users to test the

suitability of particular designs and proposed experiences. Finally, a UX architect

(or information architect) thinks about how the system is structured as a whole and

where the information is presented to users based on their needs. Something an

information architect might produce for a traditional web site is a site map showing

how the user might navigate through the pages, but ultimately the goal is for a user to

find the information they want to find where they expect to find it, and make sure that

information is at the level of detail they expect—not too detailed, but also not so general

that the user doesn’t end up satisfying their original need.

There are overlaps between these roles. A content-heavy web site may have a role

that combines the architect role with that of a copywriter. The output here isn’t the visual

design, but instead both the content that will fit into the website and the architecture

that holds that content. The content is written in direct response to user need, and

the same UX discovery and design processes still apply to develop this output. It’s

increasingly common for UX designers to also have front-end development skills, so that

they can implement their designs directly in code, as well as skills related to the process

of understanding and testing user requirements. Conversely, full stack developers will

often learn skills that were previously in the domain of a UX specialist, further realizing

the benefits of full stack development.

User experience has become so prevalent that if an organization doesn’t embrace it,

they will quickly be outclassed by competitors who do. Sometimes the smallest teams

have no one dedicated to these UX activities, but it’s important for the whole team to

stay focused on meeting the needs of customers who use the product. Any user interface

will have some design to it. Even if that design hasn’t been fully developed by a designer,

it will emerge from the implemented code. As a developer, fully understanding the UX

of what you’re building from the point of view of those who are building it will help you

make a better product, and you’ll likely work with UX practitioners on this endeavor.

Information Architecture

If the end goal of a UX designer is an aesthetically pleasing look and feel that makes each

feature easy and obvious to use, then the ultimate goal of an information architect is

making sure each individual component on a page is where a user expects to find it, with

minimal ambiguity. This goes beyond a single page, though, and applies to the structure

of a whole site, ensuring that a user can navigate a site or app to find the information

they want.

On a team where there is a silo between UX and developers, UX designers might

often hand over visual specifications for components, and UX architects hand over the

site map and wireframes showing how a page displays its components. In the world

of a full stack team, these teams work hand in hand. In fact, aesthetics are actually the

least important concern of a UX team. If your users can’t find the information they’re

looking for, then it doesn’t matter how good it looks. Similarly, once they get to the right

place, the information they’re looking for or the feature they’re trying to use must have

“affordance,” meaning it should behave in an obvious and unsurprising way. Together,

these concepts are thought of as usability, and the main goal of a UX team is to produce

a usable web site, and then apply branding and aesthetics on top of that as a “cherry

on top.” A classic example of design versus aesthetics is Craigslist. The visual design

of Craigslist is very basic, but the site offers a strong user experience. Information is

structured in a logical way, and it is obvious how to use each feature of the site.

Affordance is an important concept in HCI, and therefore in user experience. It

applies to design in general, not just digital design. The affordances of an object are said

to be the way its form indicates how it can be used—for example, a handle on a teapot, or

a handle on one side of a door versus a push panel on the other. Computer user interfaces

will usually have non-physical affordances. It is typical to make use of common patterns

to indicate a way of interacting with something (for example, a button on a web page may

have padding and be surrounded with a box, and have some hover state), or to suggest

affordances by using skeuomorphism—borrowing design from a real-world object.

The concept of perceived affordances puts any affordances an object may have into

context. For example, the affordance of a toilet door lock is often that it will be green to

indicate it is available and red if not, but this affordance is not a perceived affordance for

color-blind people. Similarly, in UX design, the reasons people might come to a web site or

use a web app will often put them in a certain mental state or give them expectations about

how a thing should work. Designers need to take these perceived affordances into account.

Affordances by themselves are often not enough, especially when the user is

undertaking an action that is especially complex. In these cases, it is important to make

sure the user is aware of the logical model underlying the operation they are trying to

achieve and guiding them through the action. Designers must also try to pre-empt and

restrict any actions that may be taken due to a faulty understanding of the underlying

model. However, this should not be used as an excuse for bad design. The “guided

tour” pattern that many web apps use now is often executed inappropriately and used

when the underlying model is overly complex. Although users can navigate bad design

(especially when given no choice to do so, such as with internal tools), it should still be

avoided, and fixing it is the ethical thing to do as it will reduce stress, increase efficiency,

and reduce mistakes for an organization. Given a choice though, many users will eschew

a badly designed site completely.

It is common to see job openings for “content designers,” especially in the financial

services sector, and there is often some overlap between the role of an information

architect and that of a content designer.

A content designer goes one step beyond that of a copywriter (although many

content designers end up creating the content too), in that they help determine the

content that needs to be conveyed. They can help determine the high-level structure

of this content within the context of an entire site, as well as the structure of a piece of

content itself, and the links between them.

50

One area of overlap between an information architect and a content designer is

the process of naming things. As the old joke goes, naming things (alongside cache

invalidation and off-by-one errors) is one of the two most difficult tasks in computer

science, but consistent and clear naming can make it much easier for users to find what

they are looking for. Names should be chosen from the point of view of the user, rather

than that of the business. For example, a rail operator may announce that they have a

“vehicle failure due to a pantograph issue,” but this can come across as meaningless

jargon to many members of the public. Instead, announcing that “the train is cancelled

due to a fault with the overhead lines” is clearer and still conveys the same information.

One important responsibility of an information architect is to make sure the

structure of the site reflects what users actually want. In organizations without

information architects, it is common for different parts of a site, or different sites for the

same organization, to be run by different internal teams, and as a result the structure

of a web site then reflects the management hierarchy of the organization, meaning

that some information might not be where a user expects it to be. This is an example of

“Conway’s Law,” which states that anything designed by an organization is destined to

mirror the internal corporate structure of that organization. When an organization takes

information architecture seriously, its information architects must break down these

siloed walls. An information architect might belong on one team but have to work with

other teams (or work with other information architects across an organization) in order

to produce something that works holistically from the perspective of a user outside the

organization.

One final note on information architects: there is another similar-sounding job

title of data architect. Data architects are responsible for defining structures and

relationships, but as the name suggests, they work with the raw data underlying an

organization. Data architects also usually focus on the needs of the business, rather than

that of the users, often addressing on concerns such as removing duplication, security,

and accuracy of the data. Ultimately, this data is used to convey information on a web

site, so information architecture has an impact on data architecture, but the skills are

quite different.

Getting the User Experience Right

On a project where user experience and development teams are separated, it may be

the case that a designer would build a design based on their own experience and the

requirements of that particular feature and hand that over for a developer to implement.

Often, aesthetics are one of the driving forces of the design.

Following the principles of UX, when a designer builds a design, or an architect

comes up with a structure, they think about the assumptions they’ve made. If different

assumptions can be reasonably made and it is unclear which ones are correct, then

different designs are built that each focus on different assumptions. These designs are

then tested with real users to check whether those assumptions are correct, and ensure

there are no hidden issues in the design and that it behaves as a user expects it to.

One of the biggest indicators that a team is working in a modern way is how often

they do user testing, and how they do it. A team that user tests constantly might be new

to it and trying to find the balance between this new way of working and the old, whereas

teams that never user test may be stuck in a traditional mindset.

User testing at its core seems deceptively simple. You simply invite users to interact

with your web site and give them tasks to complete, watching them as they do so.

It’s important to not only watch what they are doing and saying, but also their body

language, as this can suggest frustration or other problems that might not be obvious

from what they’re saying or doing. However, correctly designing your test (the tasks you

ask the users to perform) and selecting the right users to test with can be quite tricky,

which is where the role of dedicated researchers come in. Often having a psychology

background, these researchers can use their formal training and experience to help

develop tasks that focus on the nature of the system being tested, avoid any leading

questions, and ask appropriately probing questions to get a good level of insight.

In terms of the number of users you want to test with, one school of thought

promoted by Jakob Nielsen is to run many tests, where each test focuses only on one

thing, and has five participants. An alternate school of thought is to use larger groups

(perhaps a dozen participants), but look at many parts of an application at once.

The final thing to consider is what to test. Of course, you’re not actually testing the

user, but rather your application (or a part of it) to see if it’s usable (in terms of perceived

affordances of the UI components and the discoverability of a goal within an information

architecture). In some cases, it may be acceptable to test a finished product— perhaps

if it’s a current legacy site you’re trying to improve—but often waiting until the end of

development before user testing can be expensive if it turns out there are significant

issues that need to be resolved. As a result, user testing is most often done on some level

of prototype.

At the other end of the spectrum to testing with the final product is testing with a

paper mockup. Although some details will get lost, this type of prototyping is often quick

to make and useful for checking any high-level concepts that underpin the entire site,

and is especially useful if you’re making any assumptions about the mental model a user

may have about the actions they are about to undertake.

In between these two extremes is where good collaboration between developers

and designers can be effective. Prototypes can be built in actual web technology that

are suitable for user testing, often without the full level of robustness that would go

into production code. Depending on exactly what is being tested, concerns such as

responsiveness, cross-browser compatibility, accessibility, and error handling can be

disregarded. It is common for a prototype front-end component to be developed in

isolation, using canned responses and without being connected to any back ends. These

prototypes are then thrown away, even if the design was successful, as retrofitting the

concerns of accessibility, responsiveness, etc., is usually more effort than re-building it

from scratch and considering these qualities from the start. Speed, rather than quality, is

more important here.

You may be tempted to ask a user directly what they want it to do, but this often does

not work as well as you may hope. It’s not easy for a user to realistically visualize the way

they want a thing to work, and they often don’t come up with the best ideas in practice.

Performing these more formal user tests allows you to check against the “gut” feeling of

a user. However, some UXers will undertake “co-design” workshops, where stakeholders

(including users) will get together and design something collaboratively, rather than

just being presented with a finished design at a user testing session, and this can be a

valuable way of working to generate designs too.

There is a downside to running formal user testing sessions and experiments

however, which is the cost. If a new feature on a site is not especially groundbreaking

in terms of requirements or interactivity, or is largely similar to another one elsewhere,

it can be effective to simply apply a known pattern to that feature instead of testing

everything, and then sense-checking that by using analytics after it has been fully built, if

there’s a low risk of getting that design wrong.

This trade-off can be dangerous, where common web patterns that seem effective

have been shown to actually not achieve their goals very well after further scrutiny. This

includes patterns such as the “hamburger menu,” icons without a label next to them, and

carousels, which have seen widespread adoption.

It’s important to remember that user testing does not need to be very formal. There

are low-cost ways to execute user testing without having to hire a specialist or rent

a facility with one-way glass or recording devices. Although these don’t give you as

detailed or accurate insight as a more formal session, they can help you identify the most

obvious issues with your app. These low-cost sessions are referred to as “guerrilla” user

testing. A common guerrilla testing session might take place in a coffee shop, where

(with permission from the owner) you could offer to buy someone a coffee in exchange

for 10 minutes of their time, where you observe them using your site or carrying out

some common tasks. If you are developing internal tools, then this becomes even easier;

you just need to ask potential users whether you can observe them using your designs in

situ, and many will be more than happy to do so.

As we will discuss in the Ethics chapter, user testing is a form of experimentation

on humans. In this regard, we must behave ethically. Fortunately, there is much we

can learn from other disciplines (especially social sciences), as they have honed a good

understanding of how to undertake these kinds of experiments ethically. The general

rule of thumb is informed consent: the user must be aware of what they’re being asked

to do and agree to take part, with the ability to withdraw from the agreement at any

time. The user tests shouldn’t aim to mislead or trick a user, and should treat them with

respect. The results should also be suitably anonymized.

Although user testing has become the poster child of the UX process, it is not the

only technique you can use to check the usability of your site. A web app or site with

good analytics should allow you to interpret the data to answer certain questions about

how your site performs in production.

Halfway between user testing in person and purely focusing on analytics after the

fact is a type of testing known as A/B testing. A/B testing involves presenting a number

of variants (often two) to a user along with a “control” case of the current site with no

changes. A subset of users on your site are randomly selected to take part in the trial and

then given one of each variant. Analytics are then used to determine how many users

completed an activity using each variant and the control, and this number determines

which was the most successful (or not; it is not assumed that both variants will perform

better than the control) by applying a statistical test to the collected data.

Despite what many companies might try to sell, A/B testing is not always an

appropriate tool to use. A naive approach to A/B testing might be to directly compare the

number of people who were able to complete the action you were testing. However, the

theory of statistics tells us that these numbers are actually slightly fuzzy underneath.

The statistical significance of the result needs to be determined in order to evaluate

whether the relevance of these numbers. This concept comes from the idea of

“sampling.” In this case, a sample is a subset of your user base that undertakes the

experiment. It’s impossible to pick a perfectly representative subset, so a level of

fuzziness is applied to the results to determine if differing results are a result of the

different subsets just behaving in subtly different ways, or if there is actually a real

change there. When analysis finds that two numbers legitimately represent a difference

in the performance of two versions, this is said to be “statistically significant.” With few

participants, the fuzziness of the numbers is more intense, so it is harder to determine if

one number is accurate or not, so a large number of participants is needed to determine

if a difference is actually significant. A/B testing is therefore inappropriate on low-traffic

areas of a web site, although by running tests for a long period of time (perhaps as long

as several weeks) you can increase the number of participants and hence get more

accurate results. On very busy parts of a web site, it might seem that you only need to

run a test for a short period of time, but this can be biased too. For example, running a

test for an hour on a Friday afternoon will only give you data for that period of time, and

users may behave different in the morning versus the evening. Running your test for at

least a whole day, and often a week, is recommended.

A/B testing also becomes complicated if you want to run multiple tests at once.

These tests can interfere with one another and invalidate each other’s results. Although

it is possible to run multiple tests on the same site, they should test distinct activities

a user might want to undertake. Similarly, when you A/B test something, the changes

made should be fairly small. For example, if you’re experimenting with changes to your

checkout process, if you redesign the flow of the forms as well as the visual elements,

it will be hard to determine if user changes are due to the improved flow or the visual

elements. With A/B testing, you also need to implement the full version of all the variants

being tested; a prototype isn’t good enough.

The ethics of A/B testing are still under debate. It is not feasible to get informed

consent in some cases, while in others, having users opt in to a “beta” mode might be

sufficient. Much of the discussion around A/B testing has focused on whether or not

the results of the test could cause harm. A famous example was an A/B test Facebook

undertook that involved showing posts with positive and negative sentiment in users’

feeds, and then seeing if that impacted the sentiment of the posts that user then made.

Many decried this as bringing harm by making people sadder. Another common type of

A/B testing (especially in startups) is by experimenting with different pricing structures.

If a user signs up at a higher price, which they are still happy to pay, despite the fact they

were randomly disallowed from knowing there was a lower price, has this caused them

harm? Some organizations work around this by always giving the lower price at the end

of the process regardless of which flow the user chose, but the answer to this question is

not clear.

A downside of using analytics and these kinds of “quantitative” methods is that they

often lack depth. It can be easy to miss the “why” of people behaving the way they do,

which the “qualitative” methods like user testing do pick up. For example, Google used

A/B testing early in their existence to compare two user experiences, and then later

found that one performed poorly because it had a larger load time for technical reasons,

rather than usability ones. Conversely, the “qualitative” methods are often expensive to

run at scale, and it can be difficult to generate large enough directly comparable data

sets. The most powerful teams will use both, with user testing giving depth and analytics

further validating those assumptions at scale, or suggesting where further work needs to

be done.

Polishing the User Experience

As patterns and frameworks are useful for developers as they implement code, patterns

are useful when designing user experiences. Even when designing more complex or

novel experiences that are being user tested, having a set of patterns to draw from

can speed up this process. The “principle of least surprise” comes into play in user

experience; a feature should work the way the user expects it to work, and consistency

across your app, and the Web as a whole, is an effective way to help achieve this.

There are non-functional requirements that go into a user experience too. Things

like use of images and colors, and the voice of the text, can set an atmosphere for users.

For organizations that also have a physical presence, such as brick-and-mortar retailers,

it can be important to make the web site feel like part of that same chain of physical

stores, as this can reinforce any marketing messages that are being transmitted and set

expectations for the experience based on that atmosphere.

A brand book is often the foundation for what a UX team delivers. It doesn’t change

often and provides a set of fundamentals for implementing a design: colors, typography,

logos, and rules about how the brand should be projected. For example, a financial

services company may be trying to project an image of being reliable and trustworthy

with money. Writing error messages in an overly friendly format, or illustrating features

with pictures of cartoon cats, may not be compatible with this goal, and these kinds of

rules should be expressed in the brand book. These simple primitives, like colors and

typography rules, are very effective in establishing consistency. Especially in large web

sites or digital presences where there are different microservices for different parts of

your frontends, any inconsistencies between these primitives can reveal the underlying

seams of your application, which can be jarring for users who perceive you as a single

site regardless of the underlying application structure.

When it comes to implementing new features, or entire new pages or screens on a

web site, you can use different levels of fidelity to give these to a developer. The lowest

level might simply be a wireframe, such as in Figure 3-1, which is a loose sketch showing

how the page fits together and the high-level information architecture of that page.

CHAPTER 3 USER EXPERIENCE

Figure 3-1. A wireframe for a product landing page

At the other end of the spectrum might be a fully detailed and annotated design

specification representing every element on the page in pixels, such as in Figure 3-2.

Figure 3-2. An annotated design specification

But as mentioned earlier, a new page will often make use of patterns that have existed

before, and if a page reuses a pattern, there’s often not a need to re-specify these details.

Sometimes these patterns are just re-using fundamentals, such as referring to

colors that are referenced in the brand (e.g., instead of expressing a hex code in the

design, reference to colors such as “primary color,” which are defined in the brand

book). Specifying these kinds of details can make it much easier for us to implement as

developers, as it makes the underlying intention clear so we can optimize and reuse an

implementation, rather than potentially re-implement the same code as it’s not obvious

that it’s a reuse of a design pattern. Specifying typography in terms of common primitives

is very powerful too.

When it comes to specifying layout, alignment of items on the page can have a

pleasing aesthetic effect. This is sometimes referred to as a rhythm, and pages that do

not have a rhythm can look messy and jarring. Attributes like even vertical spacing and

alignment of items horizontally contribute to the aesthetic and feeling of a rhythm.

A common tool to help enforce a rhythm on a page is to apply a “grid” to the page.

Grids are made up columns, and they define column widths and gutters (white space

to give elements room to breathe). All elements on the page then line up with column

boundaries, and when it comes to dictating a page layout, a designer can simply specify

the number of columns an item should take up. Grids can also help in designing

variable width and responsive web sites, such as on mobile phones, as these columns

can be defined as a percentage of available screen width, but still maintain the desirable

property of “rhythm.”

Many designers, especially for more complex applications, go a step further, and

develop a library of components that can be reused. In this case, a wireframe can simply

refer to components that may already exist in such a library (this is sometimes called a

style guide, component library, or pattern library). If a new component is involved, then

this is often first specified as a standalone item rather than in the context of the page

where it is used, easing the ability to implement it reusably.

Implementing the User Experience

Once a user experience has been designed, it must be implemented. This is another area

where collaboration between UX practitioners and software engineers can be invaluable.

Most UX designers will work with an underlying set of rules, especially around alignment

and rhythm of the placement of elements on a page, and an awareness of what these

rules are will make it easier to create robust implementations of the designs a UX team

has developed.

Many developers who have worked with CSS frameworks like Bootstrap will

be familiar with the concept of a grid, in which elements are aligned vertically and

horizontally across a page. Figure 3-3 shows a 12-column grid overlaid onto a web

site design. Each column has a gutter separating it, allowing items in columns to have

breathing room, but also for individual items to spread multiple columns.

Figure 3-3. A 12-column grid laid out over a landing page

UX designers will often produce designs that align with their own concept of a grid,

so it is important to make sure that whatever grid you use in your CSS is configured

the same way as your designer’s grid. Also common is the use of padding and margins

in a design to give elements a consistent rhythm (through even spacing of elements).

Understanding how a UX designer employs this concept means you can also start using

variables to define these kinds of elements, as well as other elements that end up being

reused, such as a color palette.

You do need to be careful when coordinating with a designer, in that sometimes the

same words may not necessarily mean the same thing to both of you. For example, the

way a designer uses the words “padding” and “margin” might not be exactly the same

as the way a CSS box model defines them; a designer might specify a 12px padding

between the text and the border of a box it’s in. You might think a simple padding: 12px

would suffice here, but if there is a line-height attribute applied to the text that makes

the height of the line taller than the text within, then that could affect what a designer

sees as the padding (they might define it as the top of the text to the edge of the border),

in which case you might need to reduce the top and bottom padding described in CSS

in order to match the padding the designer expects. Learning about the differences

between the domains of design and implementation, through learning or just open

communication, can help clarify the intent and avoid these kinds of misunderstandings.

This works both ways, not only for a developer to understand the language of design, but

for designers to understand the language of implementation, as both can grow to blur

boundaries and work more closely together.

The CSS box model is an important concept to understand, including the way it

differs from the way designers might express margins, paddings, and sizes. Figure 3-4

shows how the sizes of the different parts of the box compose together into the overall

size. The CSS box model is used to define how the sizing specifications of a component

are interpreted when it is presented on a page. The original box model was first defined

in 1996 by the W3C as taking the width as specified in CSS and then adding on the

padding, border and margin to determine the width of the whole element. However,

until Internet Explorer 6, Microsoft implemented its own interpretation of the box

model, where the width defined everything up to the border, and only the margin was

added on.

61

Figure 3-4. The CSS box model

Microsoft eventually replaced its implementation with the standardized one, but

many felt that the Microsoft definition was more useful, and in CSS3, the option to

change the CSS box model was introduced with the box-sizing directive. The default

W3C style is known as content-box, and the Internet Explorer alternative is defined as

border-box.

In order to generate a consistent look and feel across a site, designers will often reuse

components. There are various common patterns used to do this, but they all derive

from the same principles of having a hierarchy of components that are arranged to make

an end result.

A popular system for doing this was defined by Brad Frost and known as atomic

design. In atomic design, there are several levels of hierarchy:

• Atoms

• Molecules

• Organisms

• Templates

• Pages

62

An atom is the smallest unit of design, and often has one-to-one mapping with a

HTML element—for example, a generic button or text field. This will often include all

the possible states—for example, a button in a disabled or hover state, or text fields

where validation is failing. Atoms are combined into molecules, which are a more useful

component because they represent some distinct functionality. A molecule might be

an address finder or a search box, something that represents a distinct part of user

functionality but not so much that it becomes a stage of the journey in its own right.

The layer above molecules is known as organisms. Organisms are distinctive

elements of a page that may be reusable in theory, but are often only used once. The

ubiquitous header and footer of a web page may be an organism that is reused, but a

“confirm shipment” organism, which consists of atoms and molecules to build forms

and capture other bits of information, will only be used once in a checkout process.

Templates put organisms into a structure (without content) that is essentially a

whole view for the user. Pages are templates that have been populated with content,

either dynamically, if it’s a product information page or similar, or statically, if it’s

something more like an “About Us” page.

The good thing about this kind of structure is that it maps well into the ways of

implementing design specifications using HTML and CSS. Atoms can be implemented

as CSS classes, which are applied to plain HTML elements. Molecules and organisms are

often implemented either as template partials or as components in virtual DOM libraries

like React, then get composed together into templates that are populated with real data

to make a page.

The other most important aspect to translate from a design into an implementation

is the typography—the look and feel of the text on the page. Typography is one of the

most studied parts of design, since as far back as movable type in East Asia at the start

of the second millennium. Many typography purists decry the lack of control that web

technology gives designers and developers over the rendering of text, but many have

overcome the challenge, and with proper control, good typography can be achieved.

As with individual page components in atomic design, it’s a good idea to design a

series of typography atoms that are then included in the individual components, rather

than constantly reimplementing typography rules per component. This can give you a

high level of consistency in the look and feel of text across your application.

It can be tempting to simply apply typography rules to headings and paragraph tags

directly, but this can reduce flexibility. For example, if the visual structure of your page

means it makes sense to skip a heading level, then doing so introduces accessibility

63

issues into your application. Additionally, you might want to style elements such as form

labels at different levels depending on their context, so having a series of CSS classes or

SCSS mix-ins is a more flexible approach.

A popular school of thought dictates giving your typography atoms generic

names that do not link them to specific page elements, which can give designers and

developers more freedom to use the right classes, rather than having a jarring feeling

of applying a class called “heading” to a <p> tag if that’s the right thing to do. The BBC’s

Global Experience Language, for example, uses names such as “Primer,” “Canon,” and

“Trafalgar” as typography identifiers.

It is no surprise that the transition of digital design from being analogous to print

design to embracing the UX-focused methods we see today has happened hand in hand

with the need for and rise in responsive design. Responsive design is all about making

your site or app work on all sizes of screen. For many designers, this was a significant

shift in mindset, as previously “pixel-perfect” designs were produced and expected

to be implemented. In responsive design, the concept of a breakpoint is introduced.

A breakpoint is usually based on device width (but could be based on attributes such

as device height or aspect ratio, too), and designers will often design each component

or page with a mode for either side of a layout, perhaps changing attributes of the

typography, spacing, or layout. It is common to produce design specifications that are

representative of each break point, but it is impossible to cover every case, especially for

smaller screens where variable width is most common.

Implementing a responsive design once again shows that a close working

relationship between a designer and a developer is important. The developer must

understand the designer’s intention, as it is no longer a simple case of just replicating a

design pixel-for-pixel, as there are gaps between any representative breakpoint structure

a designer may have designed for. Similarly, a developer may find gaps in a design—

certain screen widths where assumptions (commonly about how much text can fit into a

particular area) fail, in which case a designer must rethink and correct.

Another difference between the worlds of a visual designer and a developer is in

the definition of a pixel. You might think that a pixel is an individual bit of light on a

computer monitor, but in CSS, this is not true. The underlying pixel implementation is

called a “display pixel,” but CSS pixels are known as “reference pixels.” A reference pixel

is defined as a single pixel on a 96dpi screen that is at arm’s length from the viewer. This

might seem complicated, but it allows you to design a site that will appear roughly the

same size regardless of the pixel density of a screen and the viewer’s distance from it.

64

Mobile phones often have a smaller physical pixel size, but as mobile phones are held

closer to the eyes, the ratio is maintained, and devices with “retina” or high-DPI screens

will map a single CSS pixel onto multiple device pixels. It is important for designers to

understand this, as this means if a designer is working on a responsive design with a

specific screen size in mind, it is the CSS pixels that matter, not the display pixels. For

example, when the iPhone 4 (the first “retina” iPhone) came out, you still specified

dimensions as if the width of the device was 320px, despite the actual screen being 640

physical pixels across.

You can take advantage of the fact that there are multiple device pixels underlying a

CSS pixel, as text and vector graphics will render at the higher resolution with the

upscaling being handled by the underlying browser renderer. Similarly, you can load

bitmap graphics that may appear to be scaled down when their size is expressed in CSS

pixels, but will render at their native resolution if the device pixels allow it.

The final thing to consider is that there may be cases where the skills of a dedicated

designer aren’t available to you. This is often the case for views like admin panels or

other development tools. Fortunately, by working with designers on other components,

and through designers using systems like atomic design, you should have enough

knowledge to proceed regardless. By picking and choosing components from a

component library, and using color palettes defined in a brand book, as well as using

components that have some proven usability, you should be able to implement a design

that feels consistent with the look and feel of the rest of the product. There’s no harm in

doing ad-hoc guerrilla testing yourself (especially if the users are your peers, in the case of

development tools) to help refine the front end too.

Information architecture is important too when it comes to implementing a design.

Understanding the underlying information hierarchy can help you avoid mistakes in

choosing HTML elements such as heading elements or <aside> tags. Although it may be

tempting to be satisfied with the hierarchy being expressed visually, using the correct

semantics for the underlying HTML is important for users of accessible technology to

understand your design too.

	User Experience
	Information Architecture
	Getting the User Experience Right
	Polishing the User Experience
	Implementing the User Experience

